Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel.

نویسندگان

  • Bernard Fioretti
  • Luigi Catacuzzeno
  • Luigi Sforna
  • Francesco Aiello
  • Francesca Pagani
  • Davide Ragozzino
  • Emilia Castigli
  • Fabio Franciolini
چکیده

The effects of histamine on the membrane potential and currents of human glioblastoma (GL-15) cells were investigated. In perforated whole cell configuration, short (3 s) applications of histamine (100 microM) hyperpolarized the membrane by activating a K(+)-selective current. The response involved the activation of the pyrilamine-sensitive H(1) receptor and Ca(2+) release from thapsigargin-sensitive intracellular stores. The histamine-activated current was insensitive to tetraethylammonium (3 mM), iberiotoxin (100 nM), and d-tubocurarine (100 microM) but was markedly inhibited by charybdotoxin (100 nM), clotrimazole (1 microM), and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34, 1 microM), a pharmacological profile congruent with the intermediate conductance Ca(2+)-activated K(+) (IK(Ca)) channel. Cell-attached recordings confirmed that histamine activated a K(+) channel with properties congruent with the IK(Ca) channel (voltage independence, 22 pS unitary conductance and slight inward rectification in symmetrical 140 mM K(+)). More prolonged histamine applications (2-3 min) often evoked a sustained IK(Ca) channel activity, which depended on a La(2+) (10 microM)-sensitive Ca(2+) influx. Intracellular Ca(2+) measurements revealed that the sustained IK(Ca) channel activity enhanced the histamine-induced Ca(2+) signal, most likely by a hyperpolarization-induced increase in the driving force for Ca(2+) influx. In virtually all cells examined we also observed the expression of the large conductance Ca(2+)-activated K(+) (BK(Ca)) channel, with a unitary conductance of ca. 230 pS in symmetrical 140 mM K(+), and a Ca(2+) dissociation constant [K(D(Ca))] of ca. 3 microM, at -40 mV. Notably in no instance was the BK(Ca) channel activated by histamine under physiological conditions. The most parsimonious explanation based on the different K(D(Ca)) for the two K(Ca) channels is provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Ca2+ entry by membrane hyperpolarization due to Ca2+-activated K+ channel activation in response to histamine in chondrocytes.

In articular cartilage inflammation, histamine release from mast cells is a key event. It can enhance cytokine production and matrix synthesis and also promote cell proliferation by stimulating chondrocytes. In this study, the functional impact of Ca(2+)-activated K(+) (K(Ca)) channels in the regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in chondrocytes in response to histamine...

متن کامل

Antisense Knock Out of the Inositol 1,3,4,5-Tetrakisphosphate Receptor GAP1IP4BP in the Human Erythroleukemia Cell Line Leads to the Appearance of Intermediate Conductance K(Ca) Channels that Hyperpolarize the Membrane and Enhance Calcium Influx

To study the role of the inositol 1,3,4,5-trisphosphate-binding protein GAP1(IP4BP) in store-operated Ca2+ entry, we established a human erythroleukemia (HEL) cell line in which the expression of GAP1(IP4BP) was substantially reduced by transfection with a vector containing antisense DNA under control of a Rous Sarcoma virus promoter and the Escherichia coli LacI repressor (AS-HEL cells). Contr...

متن کامل

Arachidonic acid is functioning as a second messenger in activating the Ca2+ entry process on H1-histaminoceptor stimulation in DDT1 MF-2 cells.

This study was carried out to identify the cellular component activating the histamine-stimulated Ca2+ entry in vas-deferens-derived DDT1 MF-2 cells. H1-histaminoceptor stimulation resulted in a rise in intracellular Ca2+ concentration, caused by Ca2+ release from inositol phosphate-sensitive Ca2+ stores and Ca2+ entry from the extracellular space, accompanied by a transient Ca(2+)-activated ou...

متن کامل

Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1.

Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1,...

متن کامل

The Activation Effect of Hainantoxin-I, a Peptide Toxin from the Chinese Spider, Ornithoctonus hainana, on Intermediate-Conductance Ca2+-Activated K+ Channels

Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 297 1  شماره 

صفحات  -

تاریخ انتشار 2009